

CAE Fidesys overview and examples of its industrial applications

Anatoly Vershinin

CTO at Fidesys LLC

© 2018 Fidesys LLC

Fidesys LLC is an engineering software company with offices in Moscow, Russia and NJ, USA, founded in 2009 as a research group of **Lomonosov Moscow State University.**

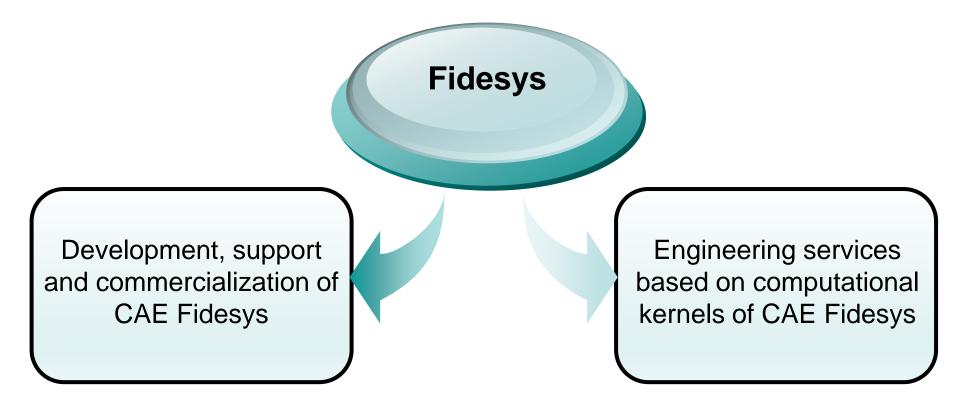
Fidesys LLC develops the next-gen universal software suite for high-end structural analysis (CAE, computer-aided engineering) using a new generation of FEA methods.

CAE Fidesys is used in mechanical engineering, mining, oil and gas industries.

The company is a resident of the **Skolkovo Innovation Center** and a member of **NAFEMS**, the International Association for the Engineering Modelling, Analysis and Simulation Community.

CAE Fidesys is verified according to the NAFEMS standards.

- 20 programmers-mathematicians (postgraduates, PhDs and PhD candidates from the top Russian universities*)
- 11 consulting professors, working in the Russian Academy of Sciences, Columbia University, University of New Hampshire and Iowa State University
- Management, sales and marketing specialists with extensive experience in various technical fields and international background


Board of directors incl. top-mangers of IT industry (former VPs of PTC CIS, Autodesk CIS)

Key expertise: precise math modeling for structural analysis and related engineering fields

*incl. Lomonosov Moscow State University, Bauman Moscow State Technical University, Moscow Institute of Physics and Technology, and other leading regional universities

CAE Fidesys Standard 1.7

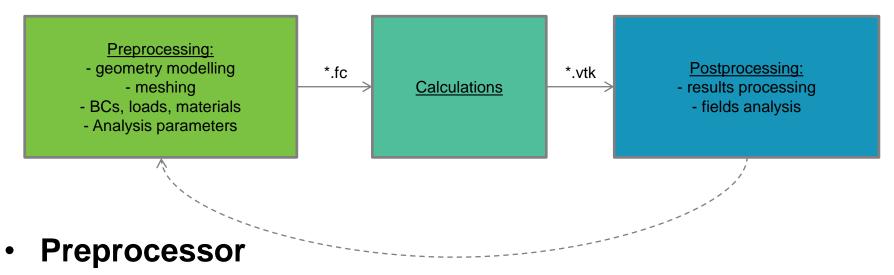
- Linear problems of elasticity
- Plane stress and plane strains problems
- 3D static and dynamic (transient) analysis
- Modal and buckling analysis
- Beam/Shell/Solid elements and their combinations

CAE Fidesys Standard 1.7 +

- Accurate estimation of the nonlinear effects: physical, geometrical and contact nonlinearities
- Problems for weakly compressible and completely incompressible materials
- Strength analysis for elastoplastic materials: Mises, Drucker-Prager
- Bonded/sliding/friction contacts
- Hyperelastic materials (Murnaghan, Mooney-Rivlin)
- Thermal conductivity and thermoelastic problems

✓ Fidesys HPC

- Parallelization of major stages of computational process
- Speed-up calculations by up to 30 times
- OpenMP technology: parallelization on all computational cores of a workstation
- MPI technology: parallelization on several workstations inside a network or on nodes of a supercomputer

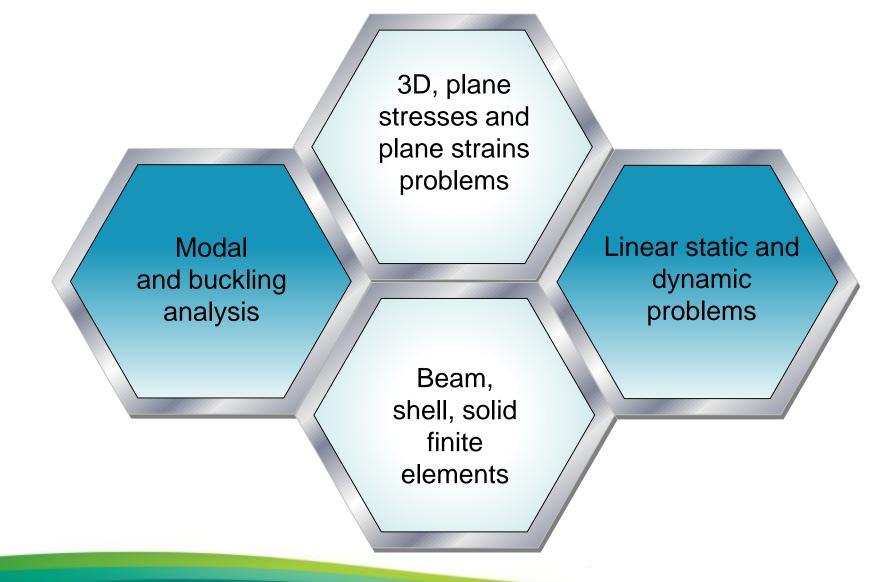

Fidesys Dynamics

- Application of spectral element method for linear and nonlinear problems
- Non-stationary problems
- Full waveform modeling
- Seismic modeling
- Non-destructive control modeling

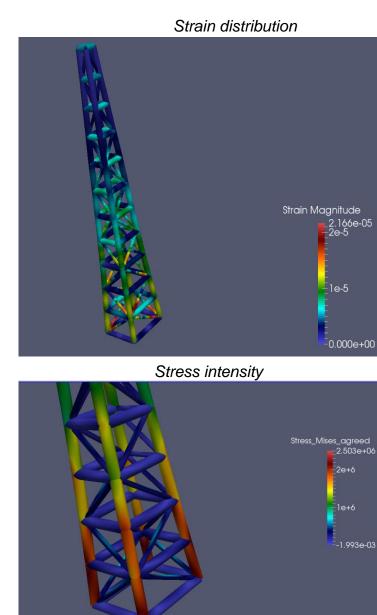
✓ Fidesys Composite

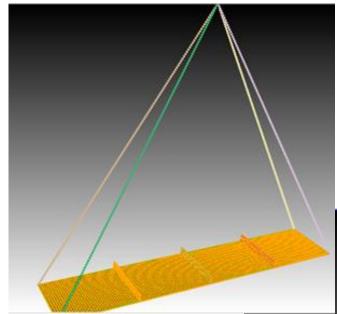
- Analysis of composites' effective properties
- Construction of the realistic composite's microstructure
- Strength analysis of tools and parts made of composite materials (including porous, fiber-laminated and woven composites)
- Estimation of effective properties of a monolayer
- Rubber-cord materials modelling

- GUI
- Console interface with an integrated automation mechanism

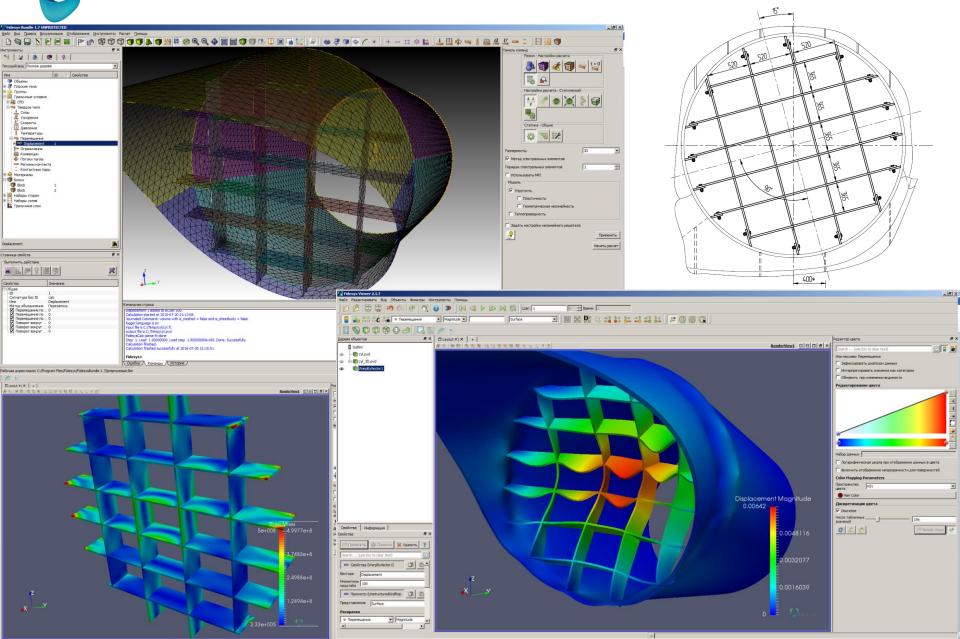

Calculation

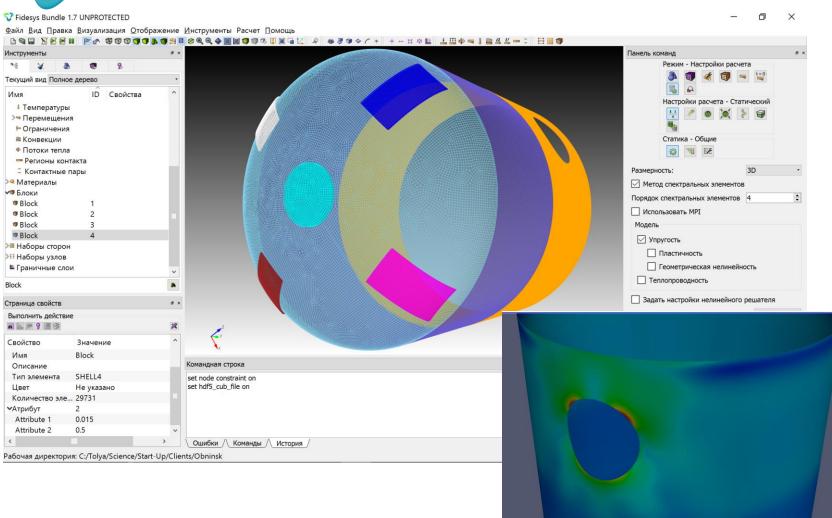
- Console application with an external Python based API
- **Postprocessor** (Fidesys Viewer)
 - GUI
 - Console interface with an integrated automation mechanism


CAE Fidesys Standard

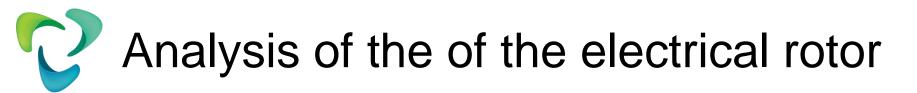


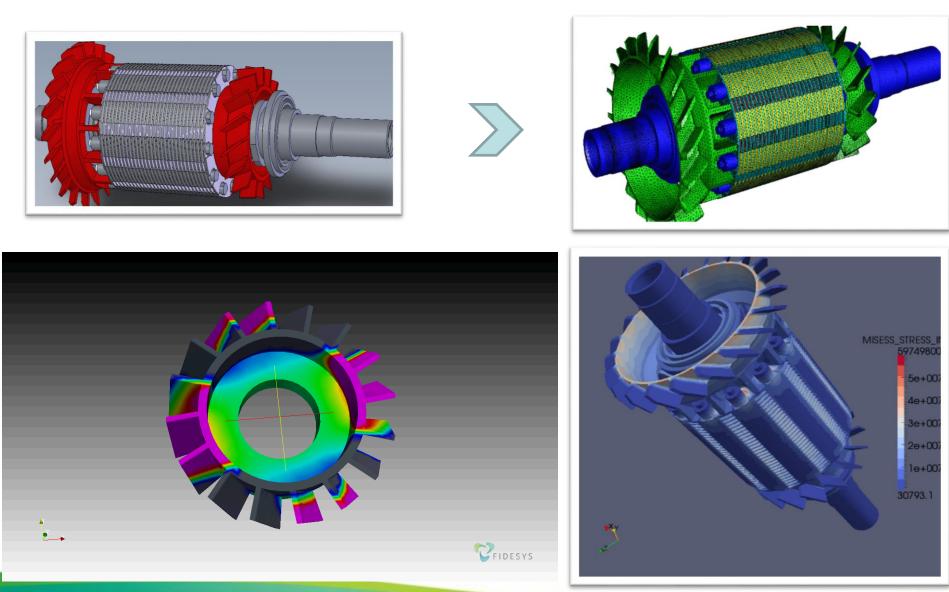





2,40e+008 2,00e+008 1,60e+008 1,20e+008 8,00e+007 4,00e+007 0,000

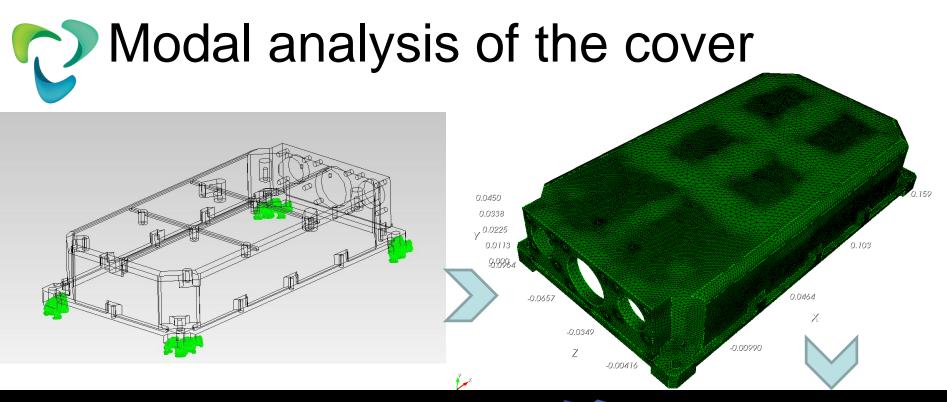
Analysis of the ice load on the thruster

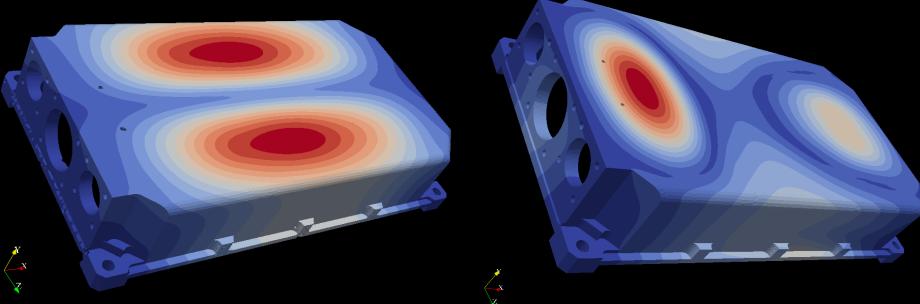



Analysis of the pressure tank

Stress Mises 2.29e+008 1.7182e+8 1.1455e+8 5.7273e+7

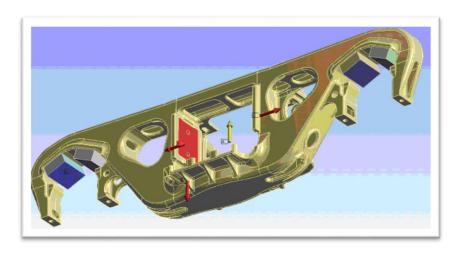
8.84e+003

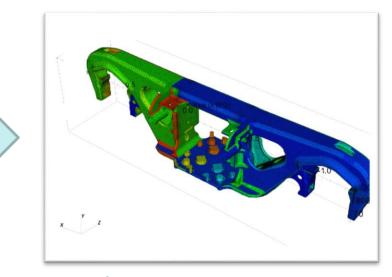

Support for the most CAD/CAE formats

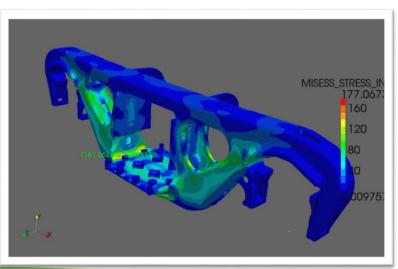


- Support of general data types
 - ACIS

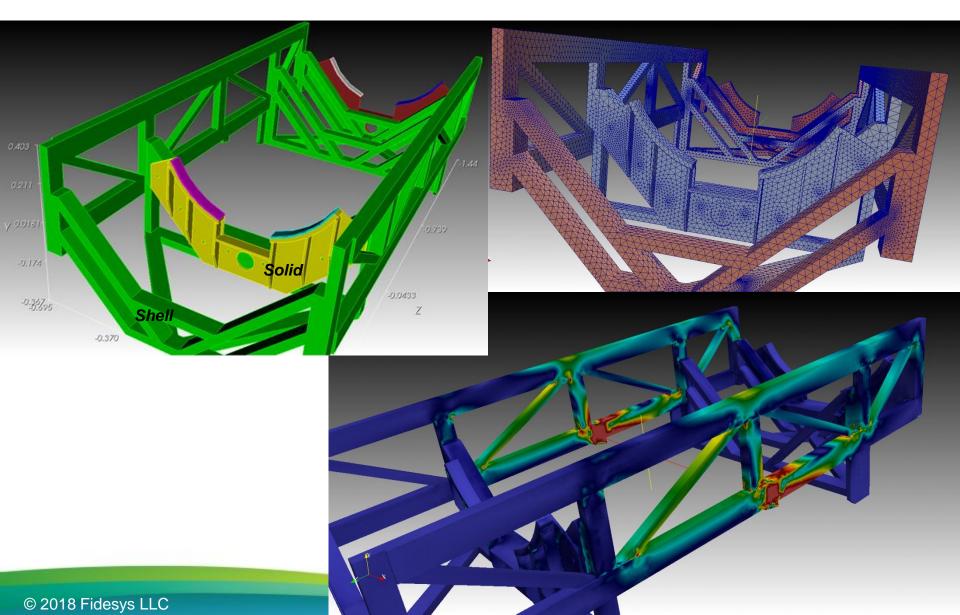
 - STEP


- AVS
- IGES
 Genesis/Exodus
 Ideas
 - Facets
- STL
- Cubit

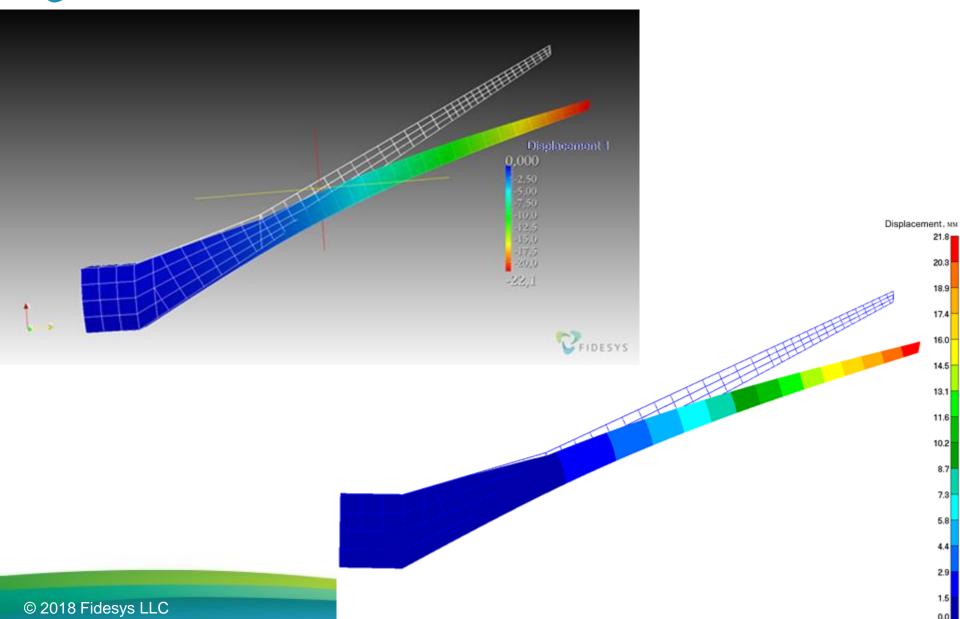




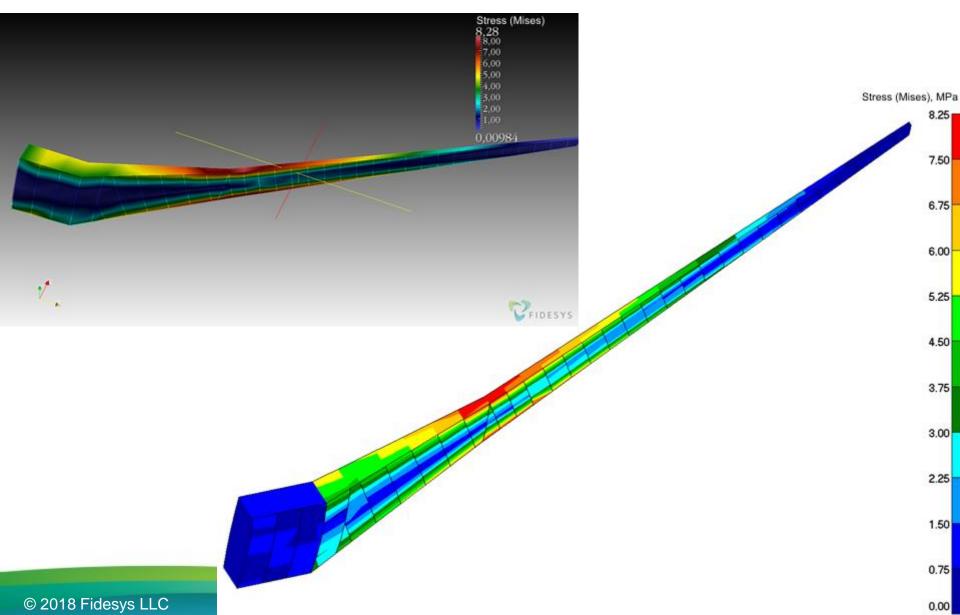
Railway wheel side analysis

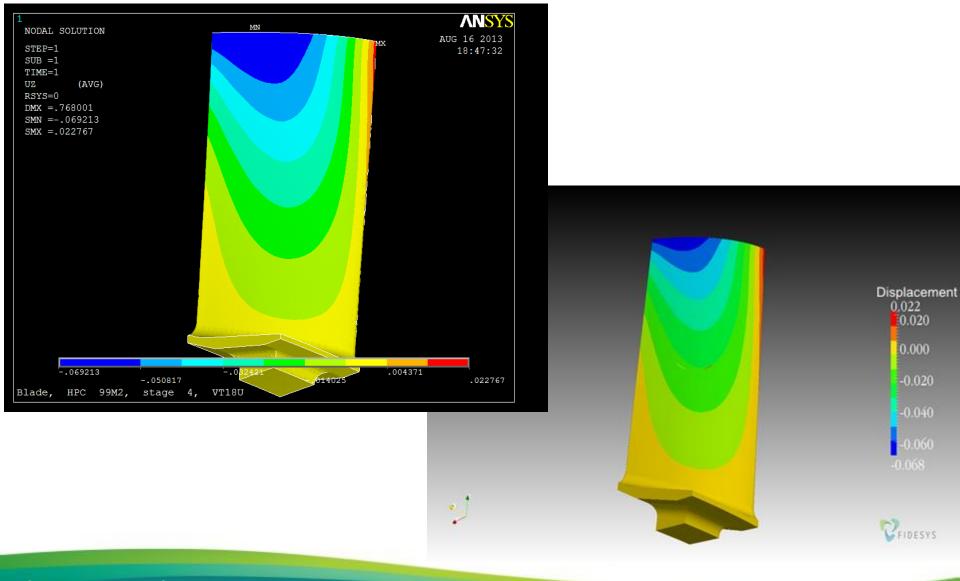


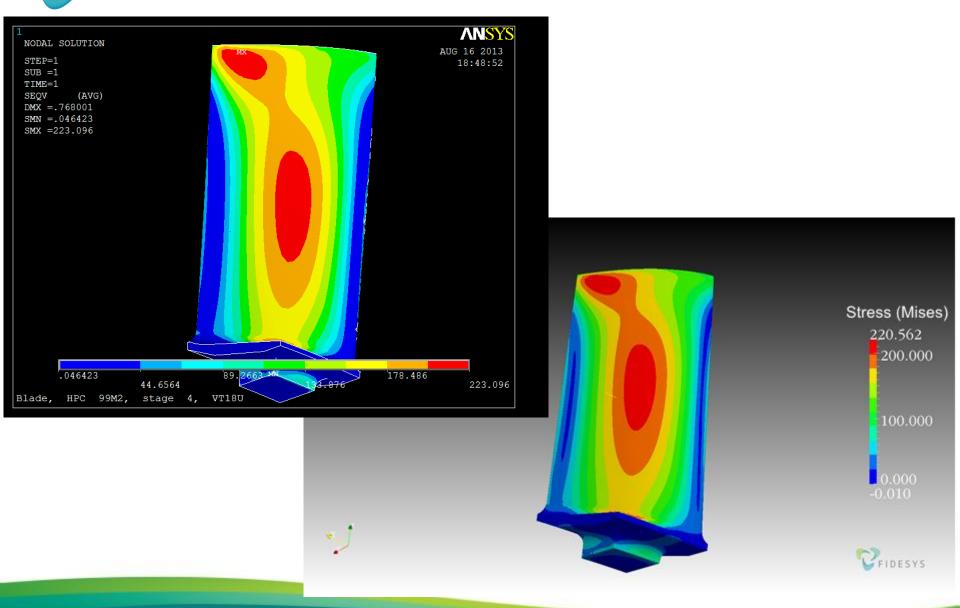
Data formats, finite elements


- ACIS (*.sat, *.sab);
- IGES (*.igs, *.iges);
- STEP (*.stp, *.step);
- AVS (*.avs);
- Genesis/Exodus (*.g, *.gen, *.e, *.exo);
- Facets (*.fac);
- GAMBIT Real Geometry (*.dbs)
- Catia (*.CATPart, *.CATProduct, *.ncgm);
- Parasolid (*.x_t, *.x_b)
- SolidWorks (*.sldprt, *.sldasm)
- Pro/E (*.prt, *.asm)
- STL Files (*.stl);
- Patran (*.pat, *.neu, *.out);
- Ideas (*.unv);
- Abaqus (*.inp);
- Fluent (*.msh);
- Nastran (*.bdf);
- LS-Dyna (*.k*)
- Ansys (*.cdb)

- BEAM2 (beam)
- BEAM3 (curved beam)
- QUAD4 (4-noded quadrilateral)
- QUAD8 (8-noded quadrilateral)
- QUAD9 (9-noded quadrilateral)
- SHELL4 (4-noded quadrilateral)
- SHELL8 (8-noded quadrilateral)
- SHELL9 (9-noded quadrilateral)
- TRI3 (3-noded triangle)
- TRI6 (6-noded triangle)
- TRISHELL3 (3-noded triangle)
- TRISHELL6 (6-noded triangle)
- HEX8 (8-noded hexahedron)
- HEX20 (20-noded hexahedron)
- HEX27 (27-noded hexahedron)
- TETRA4 (4-noded tetrahedron)
- TETRA10 (10-noded tetrahedron)
- WEDGE6 (6-noded wedge)
- WEDGE15 (15-noded wedge)
- PYRAMID5 (5-noded pyramid)
- PYRAMID13 (13-noded pyramid)
- SPRING
- LUMPMASS
- CONSTRAINT
- SEM N (spectral element of Nth order)




C Analysis of the wing box

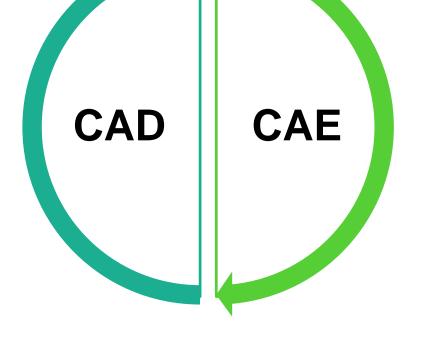


Analysis of engine blades

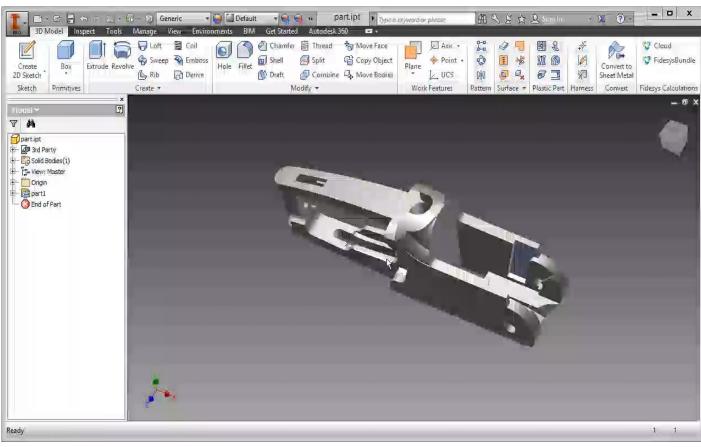
Analysis of engine blades

Integration with CAD software

- A push-button export of CAD-model into CAE Fidesys
- Automatic meshing
- Simulation and analysis at the early design stages
- Evaluation of structural performance for design alternatives



DATADVANCE



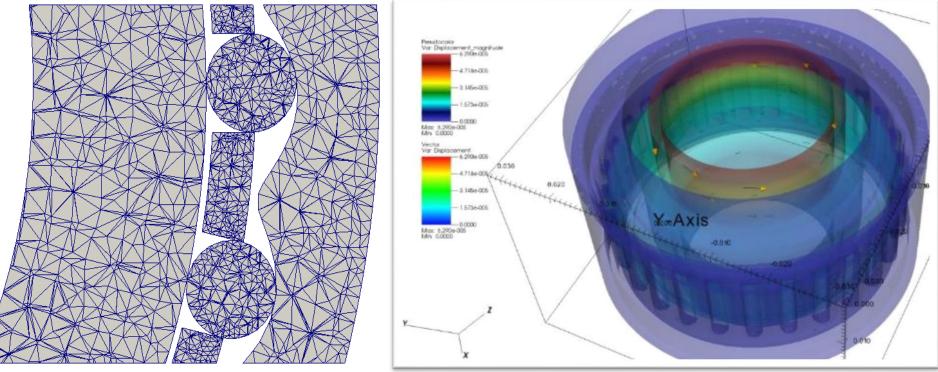
Integration with Autodesk Inventor

- One-button export of CAD model from Inventor into CAE Fidesys;
- No need to re-build FEA model if the CAD-model parameters were changed in Inventor;
- Export to Sim4Design for analysis in the cloud

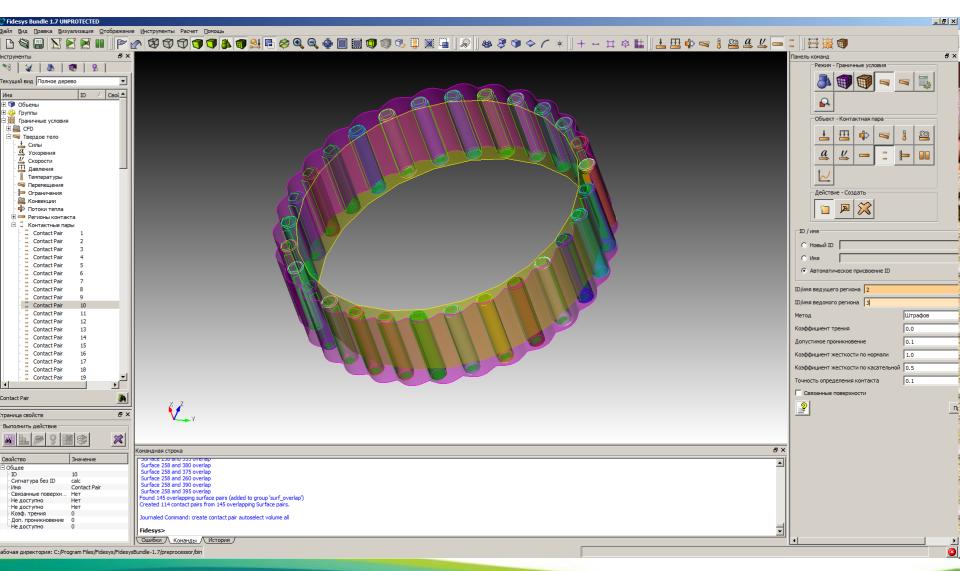
Integration with BricsCAD

- One-button export of CAD model from BricsCAD into CAE Fidesys;
- Automatization of engineering analysis of the model in BricsCAD;
- A possibility to perform model optimization and tuning

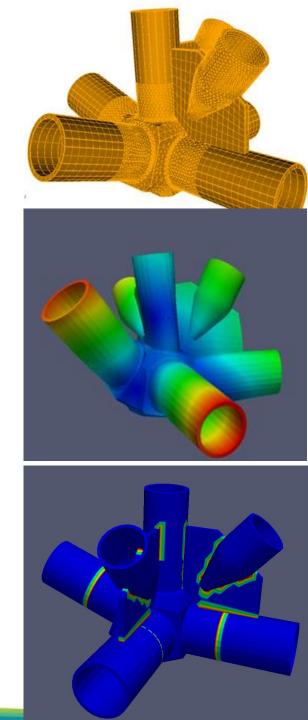
BriesCAD Platinum (NOT FOR RESALE License) - [Drawing1]														_	o ×								
🔀 File	File Edit View Insert Settings Tools Draw Model Dimension Modify Parametric Assembly Window Help Fidesys															_ 8 ×							
	Home	S	Sketch	S	olid	Surf	face	Assem	oly	Annotate	View	Settings	Tools										
New	Working Sets	Open	Save	? •	Y	:=	ぱ □⊡Copy 」』	Paste	Selec		Layouts	Settings	3	£/	* ``III - II • ~{{ <i>€ € €</i> -{{	<i>£</i> 44	✓ 4 4✓	Send e Mail	Transmit	Preview	Print		Help
		File			Chapo		Clipt	ooard			Settings				Lay	rers		Tra	nsmit	Print	/ Plot		elp
	ibrary Rep		>	< Dra	awing1	×																	×
te te		porc																AT		o Selection General			~ 🍞
																		(+		Color	ByL	ayer	
-	Drawing1																	1.	-/	Layer	0	-	
	ponent																	-		Linetype		- ByLayer	
Nam		wing1																		Linetype scal			
Desc	ription																			Lineweight		- ByLayer	
																				Transparency			
																				Elevation View	0.0000	nm	
																				Camera	2 1154	0.7011, 0.18	25
																				Target		-0.2989, -0.4	
													Z							Perspective	Off	0120007 011	100
												₽ ₽	T T							Lens length	50.0000	mm	
												*0								Field of view	39		
													\sim							Height	332.278	2 mm	
												×	-							Width	577.662	!3 mm	
																				Clipping	Off		
																				Front plane	0.0000	nm	
																				Back plane	0.0000 1		
																				Visual style	Modeling	,	
																			E				
																		E	Annotation s				
																				Default lightir	ng On		
						Mode	Layout	1 Layou	it2														
				1:															^				
				1.1																			
				11	_WCLOS														~				
																			-				
														2000 St. 1	TOO Madaan 1	01100 0070	-			THE 9445		DT T00	
eady.					_	_	_					-99.25	23, 308.3513, 0	0000 Standard	ISO Mechanical	SNAP GRID OF	RIHO POLAR E	SNAP STR	ACK LWT	TILE DUCS I	QUAD	10.	10
	ρ	([])	e		. í		3		C											~ 📀	[민 다)) E	NG 2016 1	2 🔜 🖏



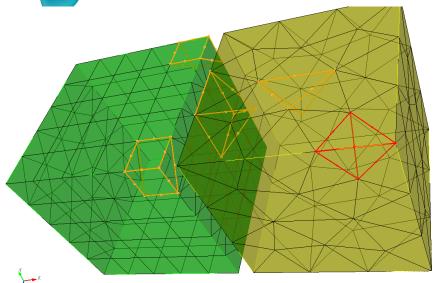
CAE Fidesys Professional

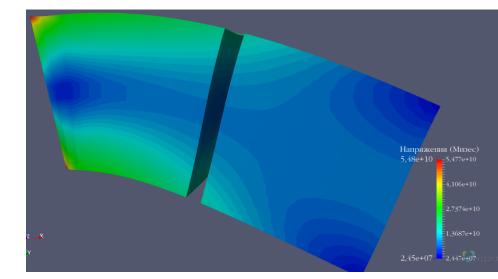

Contact mechanics of elastic bodies

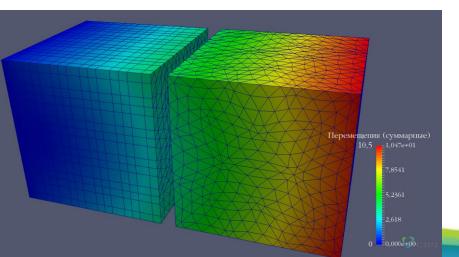
- Non-linear contact interactions between solids
- Static or dynamic (with/without friction) contact problems
- Bonded contact
- Internal penalty method, Lagrange multipliers method

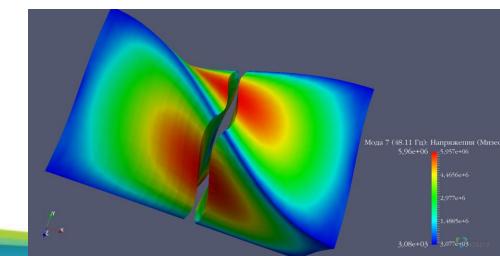

Contact interactions between rollers in the mechanical reductor

Automatic contact pairs detection



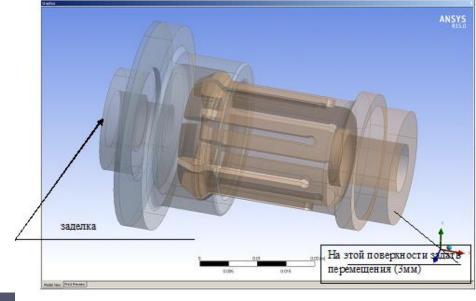

- Support for nonconformal meshes with gaps/overlaps between contacting bodies
 => no need for simplification/healing of an input CAD assembly
- Continuous displacements and stresses even in case of gaps/overlaps!
- Automatic contact zones detection based on a specified geometrical parameter

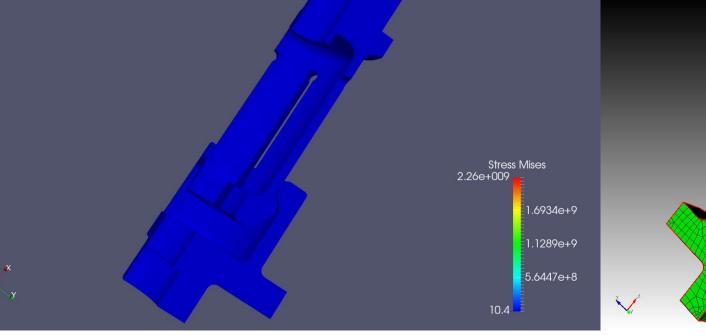

Bonded contact: example

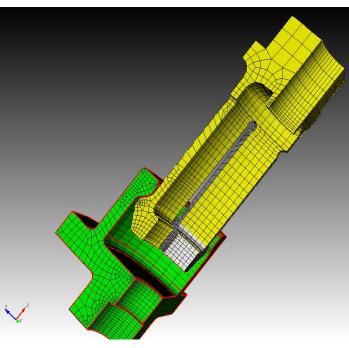


Nonconformal spectral element mesh of different orders and mixed types of elements

Continuous solution even in the presence of the gap between solids

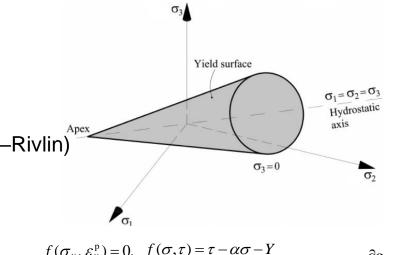


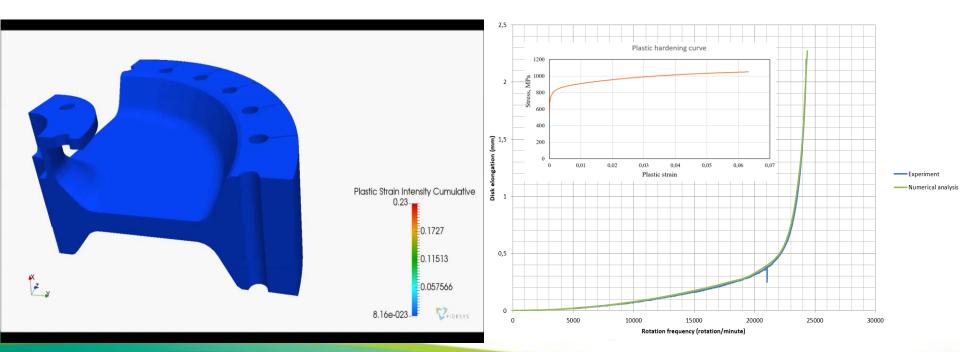


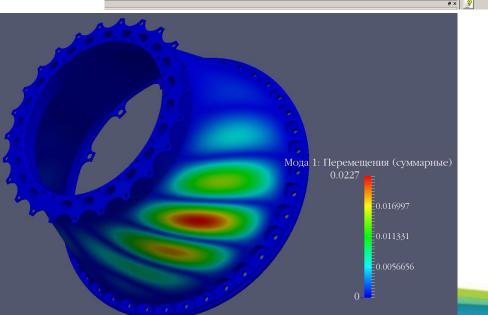


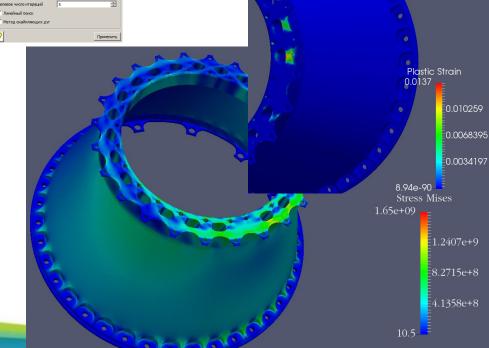
• Kinematic movement of the collet until its complete exit from the bushing

• Variable contact zone at different loading steps

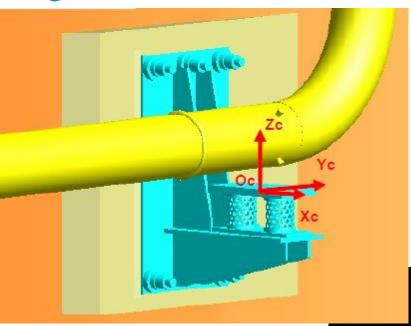


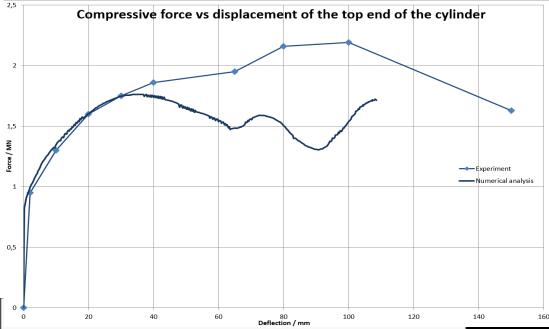


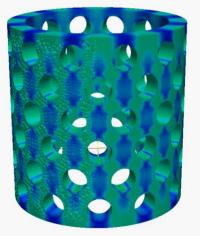

- Nonlinear elastic material models (Murnaghan, Mooney–Rivlin)
- Elastoplastic models (Mises, Drucker-Prager)
- Non-associated plastic flow rule
- Linear/Polylinear/Power hardening



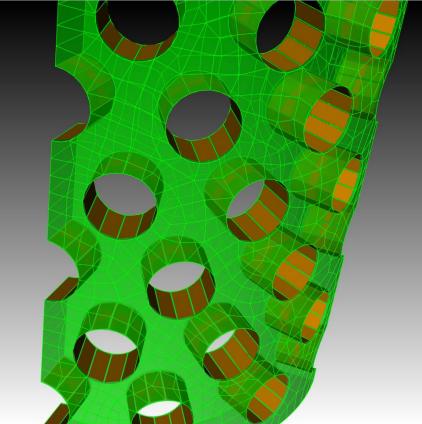
$$\begin{aligned} f(\sigma_{ij}, \varepsilon_{ij}^{p}) &= 0, \quad f(\sigma, \tau) = \tau - \alpha \sigma - Y \\ g(\sigma_{ij}, \varepsilon_{ij}^{p}) &= 0, \quad g(\sigma, \tau) = \tau - \Lambda \sigma \end{aligned} \qquad d\varepsilon_{ij}^{p} &= d\lambda \frac{\partial g}{\partial \sigma_{ij}} \end{aligned}$$


<text>





Mathematical modeling of whiplash limiters for pipeline ruptures



Elastoplastic nonlinear hardening under finite strains and multiple self contacts

Curvilinear coarse mesh used for simulation

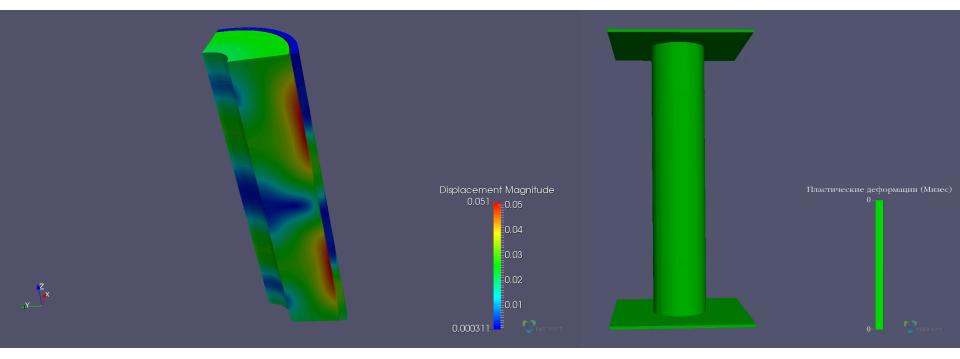
Numerical results at high order spectral element mesh

Protest

Stress Mises

3.5757e+8

2.5513e+8


.527e+8

4.6e+008

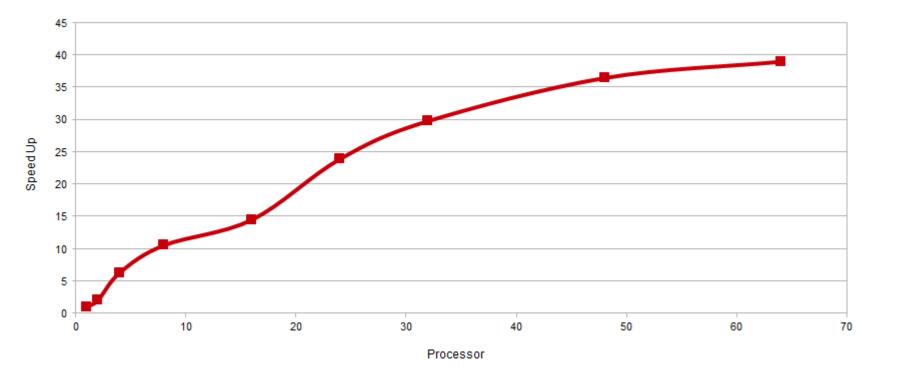
Complex nonlinear problems

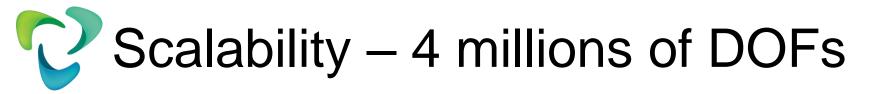
- Steady-state and transient thermal conduction
- Different kinds of BCs: temperature, heat flux, convective heat transfer and radiative heat transfer
- Thermo(Poro)elasticity, Thermo(Poro)elastoplasticity
- Self contact problems under large plastic strains

Additional modules

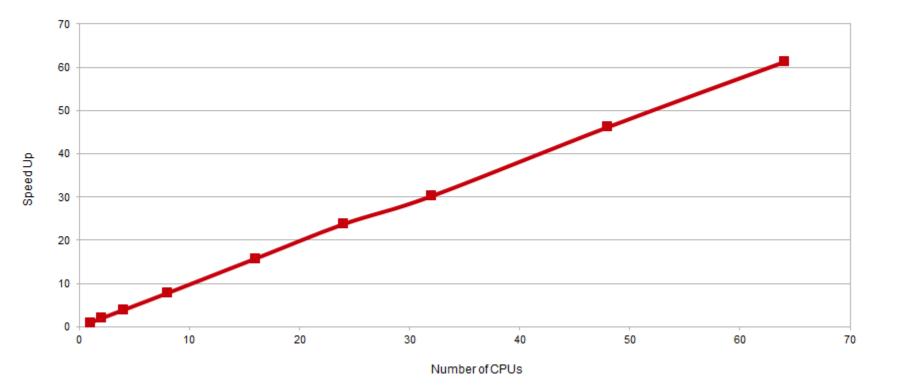
CAE Fidesys structure

Fidesys HPC high-performance computing

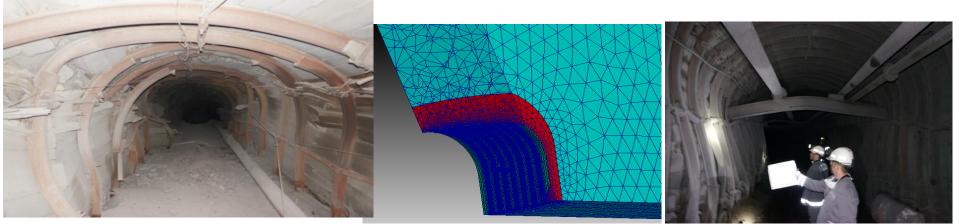

Acceleration of calculations


- All major analysis stages are parallelized by
- OpenMP & MPI technologies at
- Multi-core systems and
- Cluster/network systems which gives
- A drastic reduction of the total analysis time

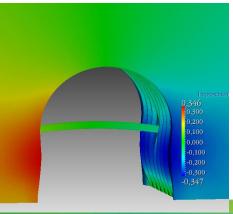
Dimensions: 3D 💌	V MPI Hosts	? ×	A MetisPartNumber 🔻 1
 Use spectral elements method ✓ Use MPI MPI Settings ○ Local. Number of processors: 4 ‡ ● Multiple hosts (2) Configure 	Host Nam 1 ns1 2 ns2	Processors 4 2	Image: Solid Color Image: Solid Color CellNormals Image: Solid Color Image: S
Model Elasticity Plasticity Heat transfer Finite deformations Contact		Add Delete Ok	 Stress Save Result File Save []] \\ns25\calc_MPI

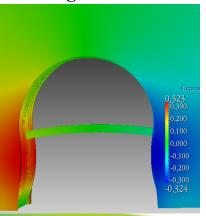


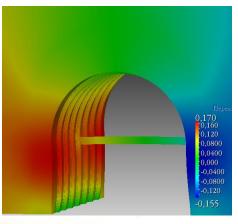
Process vs. Speed Up

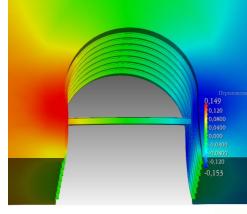


Process vs. Speed Up

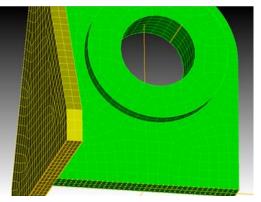

HPC example: geomechanical analysis of mine workings (> 30 mln. elements)

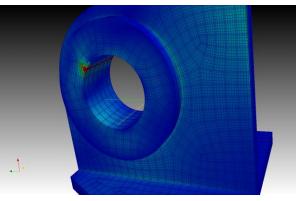



The current geomechanical situation in the mine is reproduced and the result of the possible strengthening of the rock mass after puffing (tamponage) or the replacement of the linings.

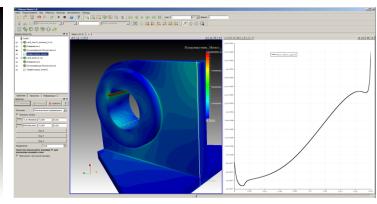

Current situation horizontal convergence 70cm Replacement of SVP 27 for SVP 33 Horizontal convergence 64 cm Reinforcement (tamponage) Horizontal convergence 32 cm

Reinforcement (tamponage) + Replacement of SVP 27 at SVP 33 Horizontal convergence 30 cm

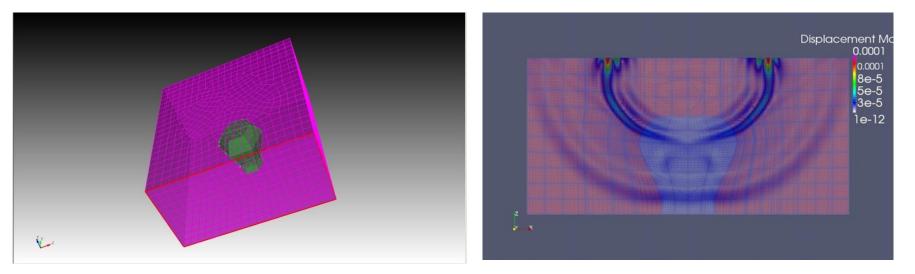



Fidesys Dynamics Spectral element method.

High order space discretization (SEM)

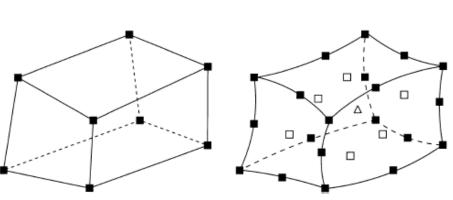

- High accuracy and stability of the numerical algorithm
- Automatization of grid convergence analysis
- Lack of locking issues for high orders of the numerical scheme

A 3D discrete model of the deck eye

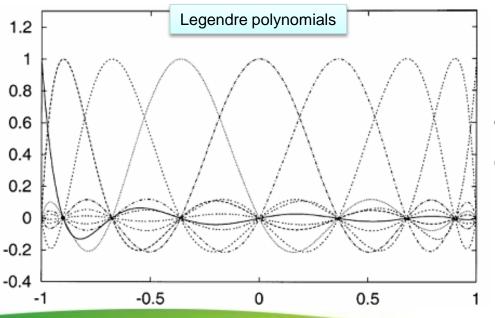

Spectral element mesh of the model

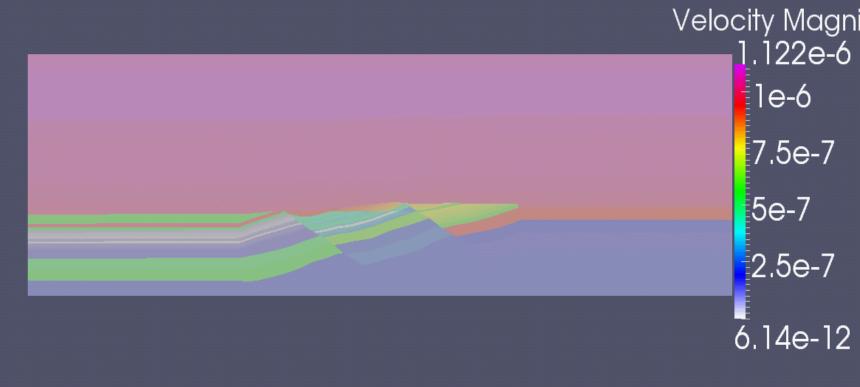
Analysis of stress concentrations

- Most effective for dynamical analysis **Fidesys Dynamics** Spectral element method. High-precision non-stationary problems
- Spectral element method a modern FEM modification
 - Non-stationary problems with fast changing processes
 - Increased speed and accuracy of calculations
 - Effective parallelization available with Fidesys HPC

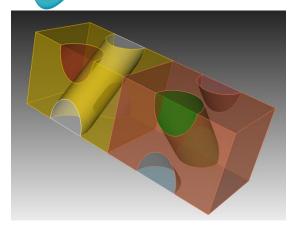


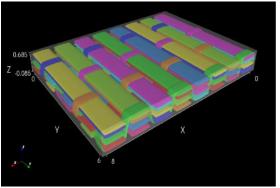
3D seismic full wave modelling



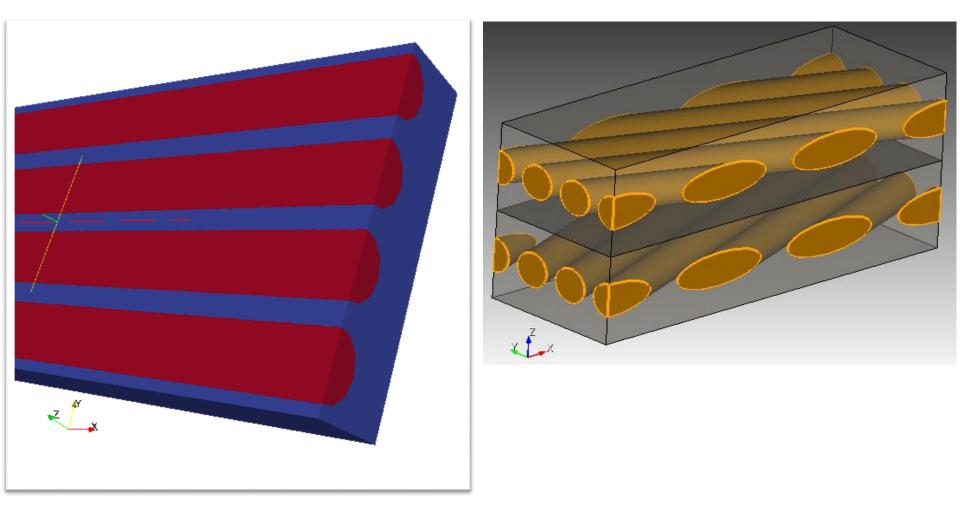

Basis functions — Legendre polynomials, providing a spectral-order approximation in space

Elements of the grid




High accuracy in approximating the curvilinear geometry of the body

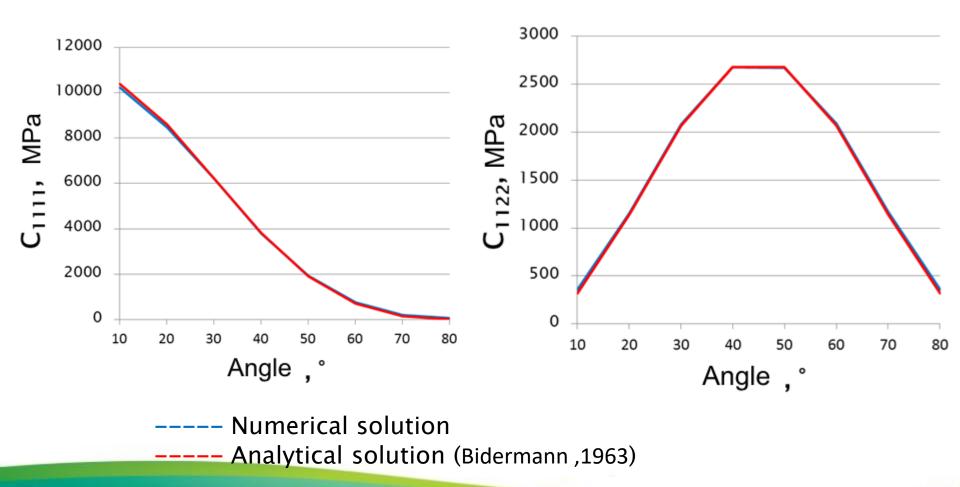
CAE Fidesys structure


IN A A A A A A A A A A A A A A

Fidesys Composite

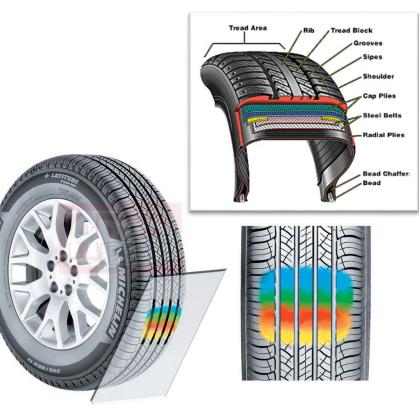
Estimation of the composite effective properties

- Engineering analysis of composites and structural elements made of them
- Multiscale simulations
 - Properties of reinforcing fibers
 - Composite matrix modeling
 - Effective properties of the composite are estimated based on the representative volumetric element (RVE) analysis
- Progressive fracture growth in the composite
 - > Determination of the critical stress value of the structure
 - > Simulation of a composite behavior after fracture initiation
- Nonlinear effective properties, prestressed materials

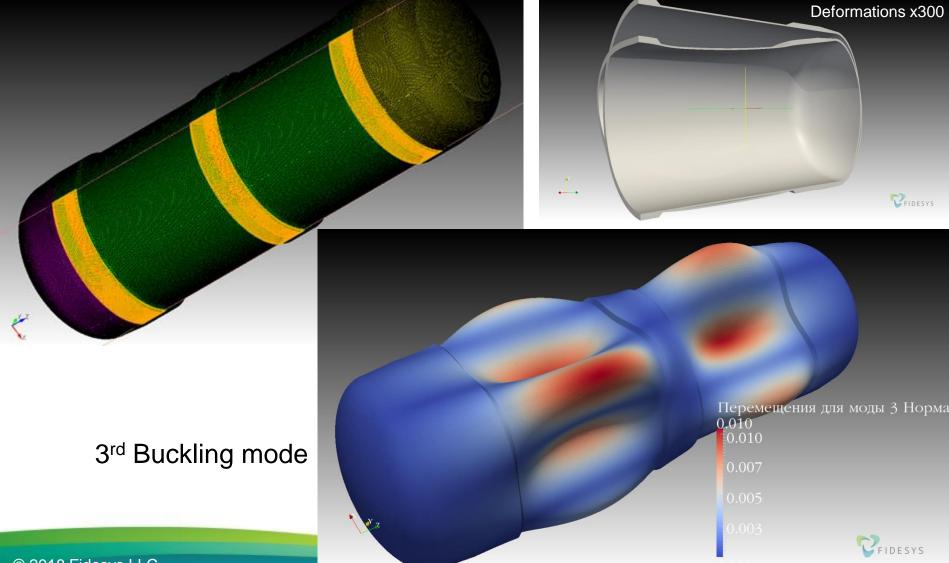

Evaluation of rubber cord effective properties

Numerical vs Analytical results

- Linear problem, dual-layer rubber cord
- Young's modulus of the cord and the rubber differ in 4 orders


CAE Fidesys structure

Multiscale simulation Stress ZZ X 0.5460189 0.4 0.2 0 -0.2 -0.359087 Stress X> 0.4750409 0.4 0 -0.4 -0.8 -1.2 -1.280673

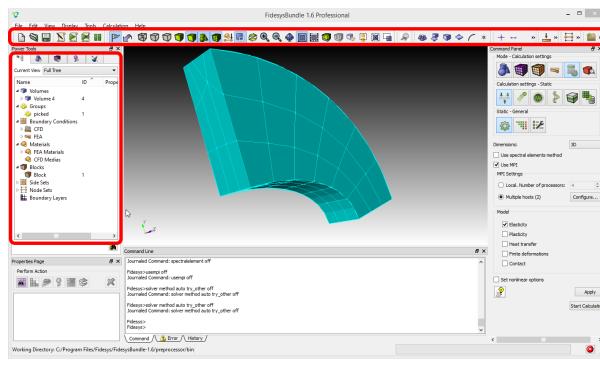

Fidesys Composite

Effective properties of composite materials

- Modeling a realistic composite microstructure
- Simulation of products made of a rubber cord

Analysis of the composite tank under internal hydrostatic pressure

CAE Fidesys interfaces

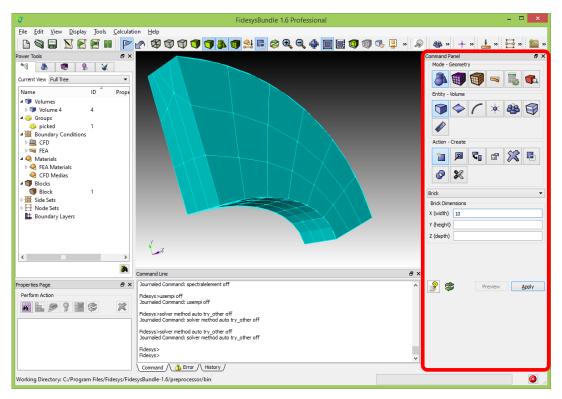

 Standard operations on files and projects

 File
 Edit
 View
 Display
 Tools
 Calculation
 Help

 Image: Straight St

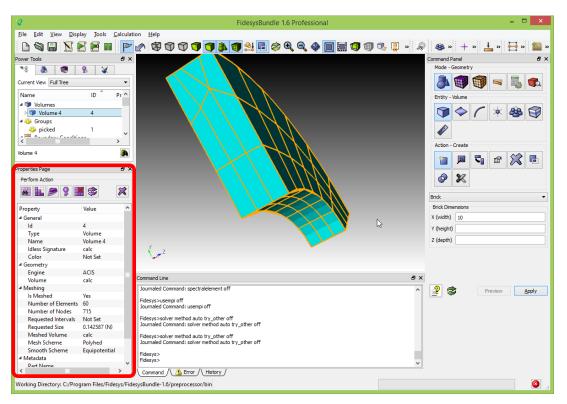
The Model Tree

Power Tools		₽×
°18 🧶 🥮	<u> Տ</u>	
Current View Full Tree		•
Name	ID Â	Propert
Volumes		
Ø Groups		
👂 🚟 Boundary Conditio	ns	
A Materials		
▲ 🗊 Blocks		
Block	1	
🚟 Side Sets		
🕂 Node Sets		
🔛 Boundary Layers		



Main window

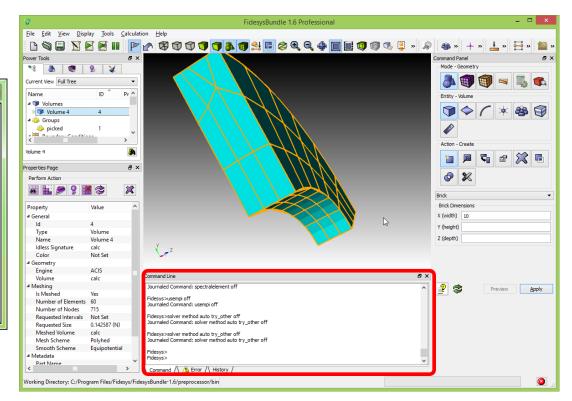
 Logically arranged Command Panel



Main window

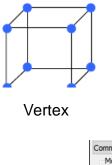
 Properties of the selected object (Properties Page)

Properties Page		₽×			
Perform Action	Perform Action				
		×			
Property	Value				
▲ General					
ld	1				
Idless Signature	calc				
Name	Block				
Description					
Element Type	QUAD4	-			
Color	TRISHELL	~			
Element Count	TRISHELL3				
Attributes	TRISHELL6				
	TRISHELL7 SHELL				
	SHELL SHELL4				
	SHELL8				
	SHELL9				
	QUAD				
	QUAD4	~			


Main window

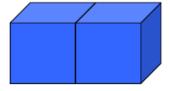
Console

Command Line
Current entity is Surface 31. Fidesys>set duplicate block elements off Setting duplicate block elements to OFF. Journaled Command: set duplicate block elements off
Fidesys>block 1 volume all Added Volume 4 to Block 1 Journaled Command: block 1 volume all
Fidesys>block 1 element type hex8 Journaled Command: block 1 element type HEX8
Fidesys>
Command / 🔔 Error / History /

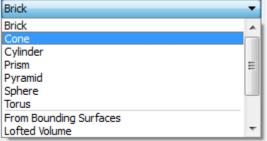

- ✓ Entering Commands
- ✓ Displaying messages
- ✓ History
- ✓ Running scripts

Main window

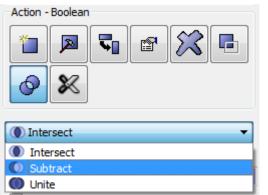
Geometry creation

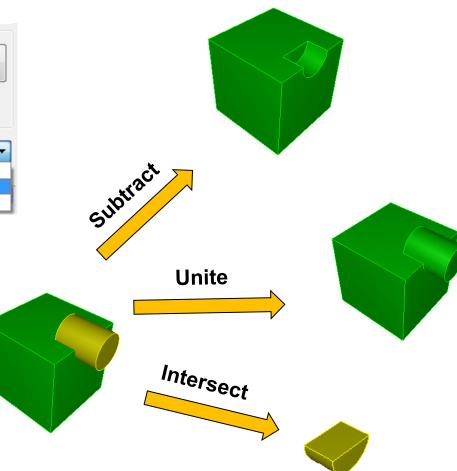


Surface

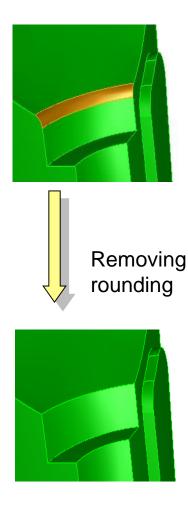

Volume

Body

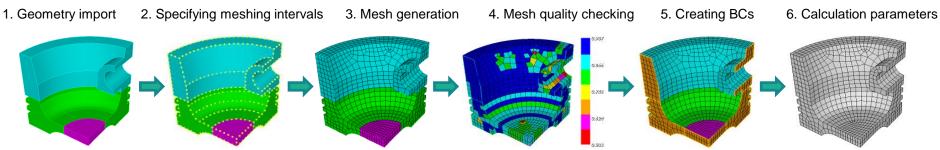




Geometry editing

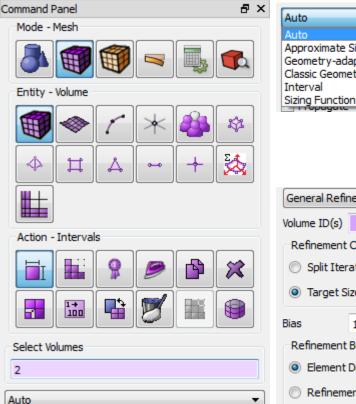


- CAD-model
 - In most cases is 3D
 - Acknowledges all the geometrical tiny details
 - Possible intersections and overlappings
- CAE-model
 - Strength characteristics are of major importance
 - Some three-dimensional parts should be replaced by beams and shells


• $3D \rightarrow 2D$, 1D

- Beam structure generation
- Shell structure generation
- 3D geometry editing
 - Chamfers and roundings elimination
 - Virtual combining of surfaces
 - Conformity of volumes

Meshing


Supported types of the finite elements for meshes:

3D	2D	Shells	Beams
4-noded tetrahedron (TETRA/TETRA4), 10-noded tetrahedron (TETRA10)	3-noded triangle (TRI/TRI3), 6-noded triangle (TRI6)	3-noded triangle (TRISHELL/TRISHELL3), 4-noded quadrilateral (SHELL/SHELL4)	2-noded beam (BEAM/BEAM2)
8-noded hexahedron (HEX/HEX8), 20-noded hexahedron (HEX20), 27- noded hexahedron (HEX27)	4-noded quadrilateral (QUAD/QUAD4), 8-noded quadrilateral (QUAD8), 9-noded quadrilateral (QUAD9)	6-noded triangle (TRISHELL6), 8-noded quadrilateral (SHELL8), 9-noded quadrilateral (SHELL9)	3-noded beam (BEAM3)
5-noded pyramid (PYRAMID/PYRAMID5), 13-noded pyramid (PYRAMID13)			
6-noded wedge (WEDGE/WEDGE6), 15-noded wedge (WEDGE15)			

Meshing

- Adjustable degree of mesh refinement (interval);
- Several meshing algorithms:
 - > Automatic
 - Specifying approximate element size
 - Geometry-adaptive
 - Interval meshing
- Meshing schemes and attributes;
- Mesh refinement;
- Mesh optimization and smoothing.

Auto Auto Approximate Size Geometry-adaptive Classic Geometry-adaptive

Specify meshing schemes and attributes

General Refinement 🔹				
Volume ID(s)				
Refinement Condition				
Split Iterations				
Target Size				
Bias	1.0			
Refinement Boundary				
Element Depth		1		
Refinement Radius		1		

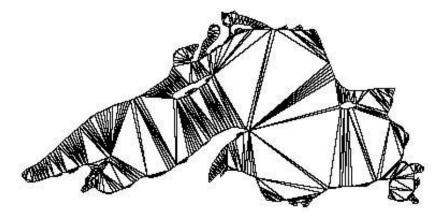
Mesh refinement

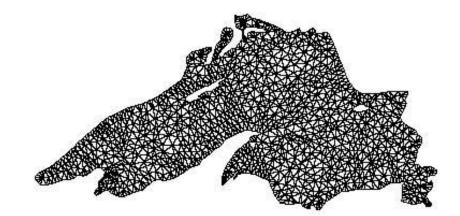
Preview

Coarse

Apply

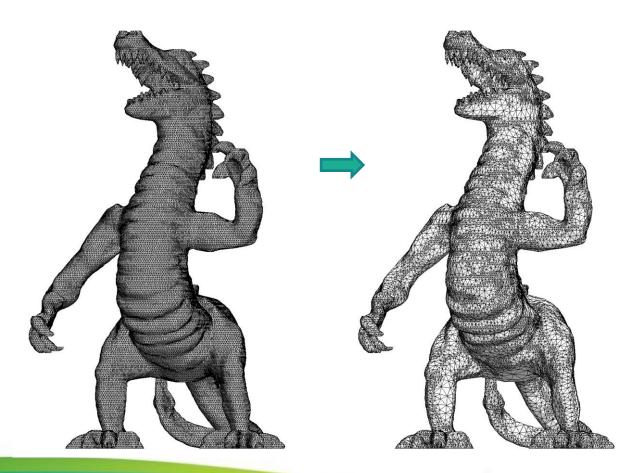
Auto Factor


Propagate


Fine

Generation of irregular mesh and quality control

Mesh refinement in accordance to user-defined metric



Generation of irregular mesh and quality control

3D-mesh refinement

Boundary Conditions

Supporting different types of BCs:

- ► Force;
- Image: Bressure;
- ✤ ➤ Heat flux;
- Solution → Displacement;
- ▮ ➤ Temperature;
- \cong > Convection;
- $\underline{a} \succ$ Acceleration;
- $\underline{\nu} \succ$ Velocity;
 - \succ Contact pair;
 - \blacktriangleright Rigid connection.

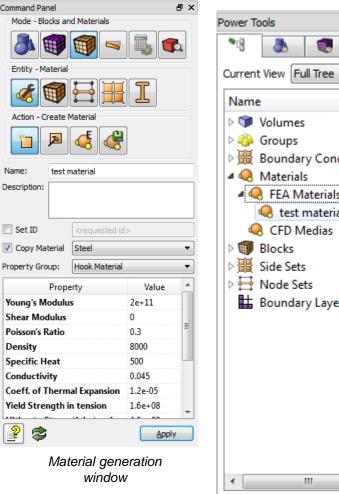
Command Panel	đ×
Mode - Boundary Conditions	
Entity	
	<u>99</u>

Mode – Boundary Conditions

3	BC Dependency	? ×
BC Name ID Displacement 1 Displacement 2 Displacement 3 Pressure 1	BC Dependency Formula Table Plot Custom ▼ 100*sin(x) Clear + - * / sin cos tan sgrt ff(A,B,C) asin acos atan exp log sinh cosh tanh abs ceil	? ×
	Apply Ok BC Dependency	Cancel ×
BC Name ID Displacement 1 Displacement 2 Displacement 3 Pressure 1	Formula Table Plot X Value Table Table -55,0932 -99,3355 -99,3355 Table Term -53,9002 -54,2279 -52,8672 51,4005 -51,7542 99,6636 -50,6412 36,6977 -49,5282 -67,2245 -48,4153 -96,1211 -47,3023 -17,7423 -46,1893 80,4378 -43,0633 -1,9022 V	port port
	Apply Ok	Cancel
Chame D Displacement 1 Displacement 2 Displacement 3 Pressure 1	BC Dependency	45

Apply

Cancel


Ok

Materials

- Physical models:
 - Linear isotropic material (Hooke's material);
 - Composite materials, concrete, geomechanical samples;
 - Rubber materials;
 - Steel, plexiglass, copper, etc.
- Materials library;

P. Constraints		Process e	ffective pro	operties da	ata		?
ata file: H:/work/t	est25/C_ijkl.txt						Browse
Material Type:							
O Transversely Is	sotropic						
 Isotropic 							
Process data Exp	oort Material						
Name	Value						
		24385,2	8171,72	36,7224	78,4162	0,036054	0,123156
Young's Modulus	10478,9		2659,79	37,4092	40,5934	-0,171397	-86,7912
Poisson's Ratio	-0,141917			42,9152	0,006055	-0,000648	-0,444483
					8112,99	-0,023243	0,003506
						1,28037	0,02068
							1,03233

Materials and blocks in the Object Tree

Beams and shells

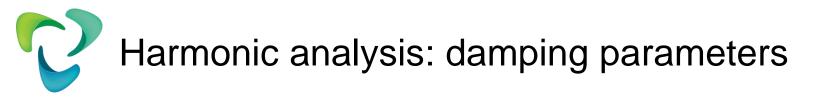
- Thickness and Loft Factor for shells;
- Beam cross section properties;

Shell Thickness	•
Block ID(s)	
 Normal Thickened 	
Scale	1.0 nt Color
Pick Color	
Add	Draw
Thickness	
.5	

Block ID	
CS Rotation Angle	0.0
Select profile	
[I-Beam	•
	B ₂ Z y d B ₁
$_{\rm Height}(H)$	0.1
Bottom Width (B_1)	0.055
$_{\mathrm{Top Width}}(B_2)$	0.055
Bottom Thickness ((
Top Thickness (c_2)	0.0072
$_{Thickness}(d)$	0.0045
Center mass coordir	nate(Z1) 0.05
Set Parameters	
Inertia moment Iy	1.94377e-06
Inertia moment Iz	2.003e-07
Inertia moment Ix	2.14407e-06

Calculation parameters

Analysis types:

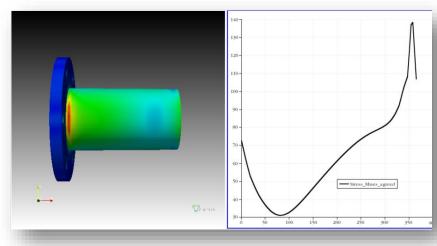

- \succ Static:
- \succ Dynamic (transient);
- Modal; \triangleright
- Harmonic; \triangleright
- \succ Buckling;
- Effective properties of composites.

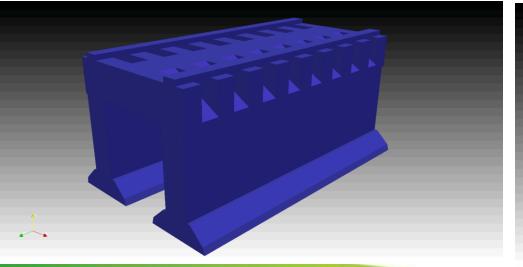
Method

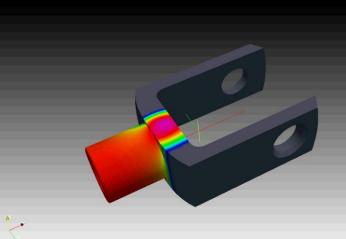
2

- Solvers:
 - Finite element method (by default);
 - Spectral element method.
- Solution progress in the console.

	Static - General	Z
	Dimensions:	3D 🔻
	Use spectral elem	ents method
	Use MPI	
	Model	
	Elasticity	
	Plasticity	
	Heat transfer	
	Finite deformation	ations
	Contact	
ethod	🔽 Set nonlinear opti	ons
Choose Automatically	Nonlinear options	
On fail	Min load steps	1
Try other Methods and Preconditioners	Max load steps	10
2 Apply	Max iterations	100
Start Calculation	Tolerance	1e-6

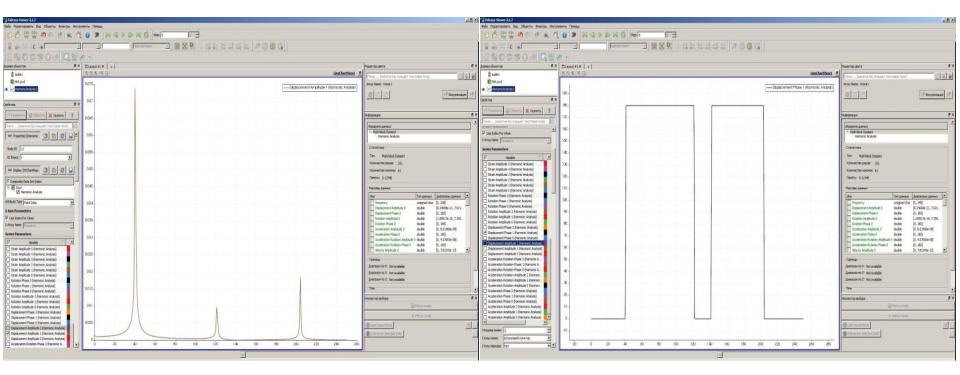


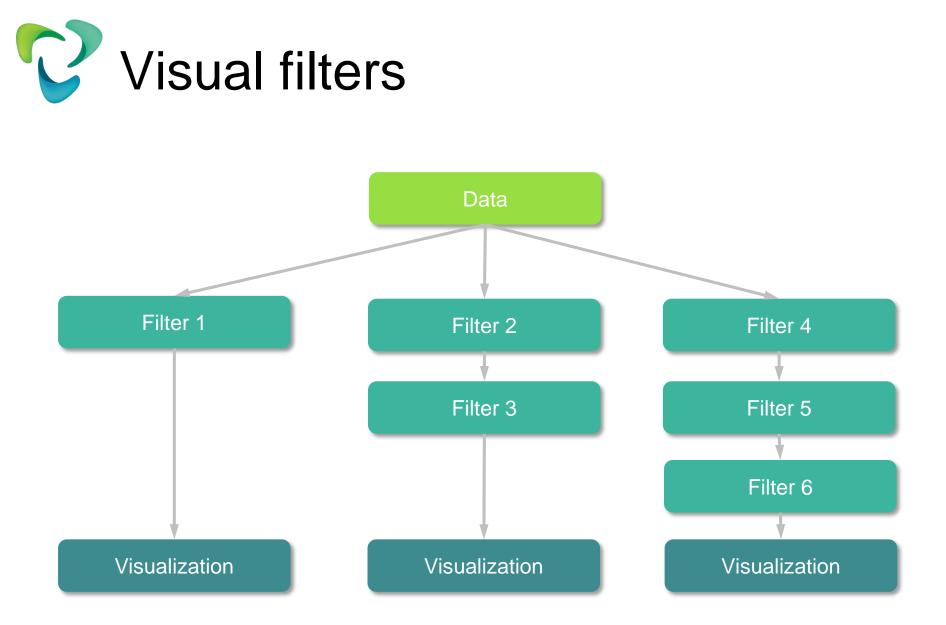

 $[C] = \alpha[M] + \sum_{j=1}^{N_m} \alpha_j^m [M_j] + (\beta + \beta_c)[K] + \sum_{j=1}^{N_m} \left[\left(\beta_j^m + \frac{2}{\Omega} \beta_j^\zeta \right) [K_j] \right] + \sum_{k=1}^{N_m} [C_k]$ Calculation settings - Harmonic analysis Entity - Spring Properties Name] 🗇 🛪 🕱 🌉 ++ Elasticity Calc. ✓ General Block ID Harmonic - Damping Density Spring type: Damping coefficient λ 1 Linear spring Mass damping coefficient Tension spring constant 0 Stiffness damping coefficient 0 Torsion spring constant Structural damping 0.0 Strength 0 Damping coefficient Mass Matrix damping 0.0 Plasticity Linear damping coefficient 0 Hardening Stiffness Matrix damping 0.0 Thermal > Apply Geomechanic > > Preload 2 Start Calculation Apply



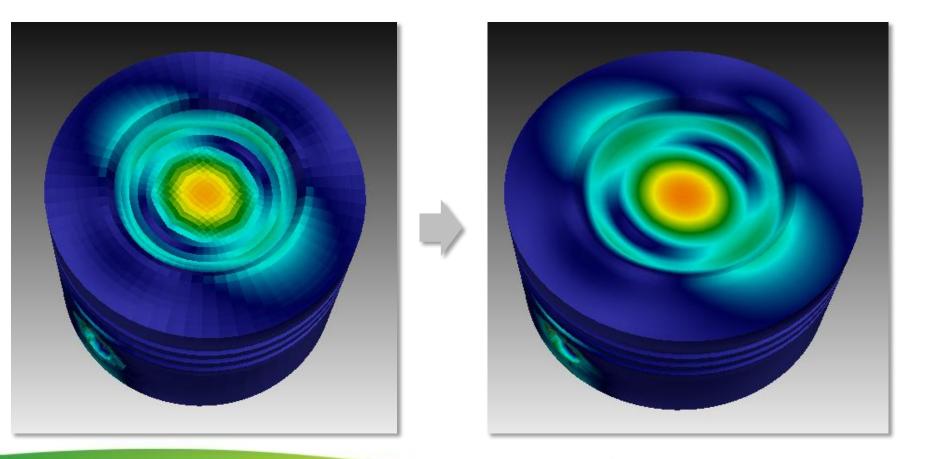
Results Visualization and Postprocessing

- Visualization and analysis of the obtained results:
 - Visualization of vector and tensor fields;
 - 1D plots, export to CSV;
 - > Time dependency analysis.
- Evaluation of the mesh quality
- Slice and cross section views
- Data export




CFIDESYS

Visualization of amplitudes and phases for displacements, velocities, stresses etc.


🙀 Fidesys Viewer 2.1.7	
Файл Редактировать Вид Объекты Фильтры Инструменты Пом	щь
🛛 🗭 🖉 💱 🖍 🖎 Поиск Ctrl+Space Recent	🛛 🕅 🗸 🕨 🕪 🔊 🛱 Step: 🛛 🔹
Общие Анализ данных	de 💌 🔄 🖉 🖉
📗 🔛 🔍 🔍 🤁 🔁 Alphabetical 👘	Harmonic Analysis
Дерево объектов	Transient Analysis
buitin:	📦 Быстрое преобразование Фурье выделенного с течением времени
	Вектор поверхности
👁 🐚 guitar_string.pvd	Высота
	Гистогранма
i de la companya de la	Градиент

Physically consistent stresses and strains

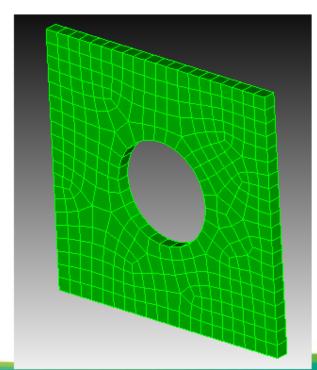
- The first theory of strength $n = \frac{\sigma^+}{\sigma_1}$ $n = \frac{\sigma_T}{\sigma_T}$
- Energy theory
- **Pisarenko-Lebedev** theory

$$n = \frac{\sigma^+}{\chi \sigma_i + (1 - \chi) \sigma_1}, \text{ where } \chi = \frac{\sigma^+}{\sigma^-}$$

Mohr's theory

$$n = \frac{\sigma^+}{\sigma_1 - \chi \sigma_3}$$
, where $\chi = \frac{\sigma_1}{\sigma_2}$

Tresca theory $n = \frac{\sigma}{\sigma_1 - \sigma_2}$


 σ_1 , σ_2 , σ_3 — principal stresses σ_i — stress intensity (von Mises) σ^{+} , σ — tensile and compression strength σ^{T} — yield strength *n* — safety margin

Fidesys scripting language

Fidesys can be controlled using the commands:

- Commands in special language are generated in GUI and then transferred to the command handler
- Command history is written to a *.jou file
- Commands are displayed in the command console window
- One can program using this command language

```
bri x 10
cyl radius 2 z 12
subtract vol 2 from vol 1
vol 1 size .5
vol 1 scheme auto
mesh vol 1
draw surf in vert 1
draw hex in node in surf 1
```

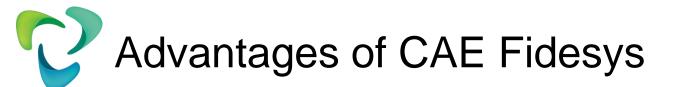

- Aprepro = Algebraic Pre-Processor
- Integrated programming language:
 - Parametrization of the journal files
 - Error control
 - Logical control

```
#{i=1}
#{size=10}
#{loop(50)}
brick x {size}
move volume {i} location {size*i} 0 0
#{i++}
#{endloop}
```


Python - widely used scripting language. Lots of software use it for automation, eg.:

- Abaqus
- Paraview
- PyTrilinos

Installer and full documentation are available on the official website <u>www.python.org</u>.


Results file open

```
from vtk import *
```

```
reader = vtkXMLUnstructuredGridReader()
filename = os.path.abspath(os.path.join(os.getcwd(), "C:/result/result.vtu"))
reader.SetFileName(filename)
reader.Update()
grid = vtkUnstructuredGrid()
grid = reader.GetOutput()
```

Stress intensity calculation (based on Mises)

```
stress = grid.GetPointData().GetArray("Stress")
maxmises = -1.0
```


High speed and accuracy of calculations

Flexible & adaptive geometry-mesh generator

Wide range of supported CAD-formats

Cross-platform (OS Windows, Linux)

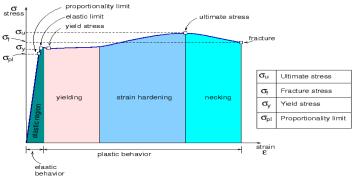
Low system requirements

Low price compared to other solutions

Cloud version - Fidesys online (SaaS)

Custom software development

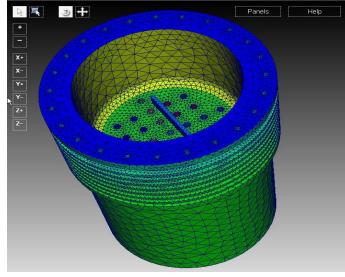
- On the basis of CAE Fidesys's software modules, a custom corporate or industry-specific software is developed (e.g. Fidesys Geomechanics for NTC Gazpromneft).
- The customized package will be more functional and easy-to-use than the general purpose CAE. It is focused on specific problems of the client.
- Development cycle of a custom software takes about 6-18 months depending on the customer's specifications with the involvement of leading industry consultants.
- As a result, the customer obtains a dedicated corporate product.
- The package can be used as a simulation software which is capable for fine tuning and extensively applied during R&D stage.



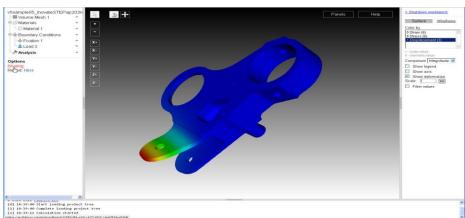
Why aren't more companies using Simulation as an integral part of Design?

- Simulation is often considered too much to be used for influencing design decision
 Too difficult - Too complex - Too much expertise required -Too expensive - Too compute intensive
- Just too much?

Simulation Designed for Design is now available!


- Simulation is no longer too much

Streamlined simulation for design

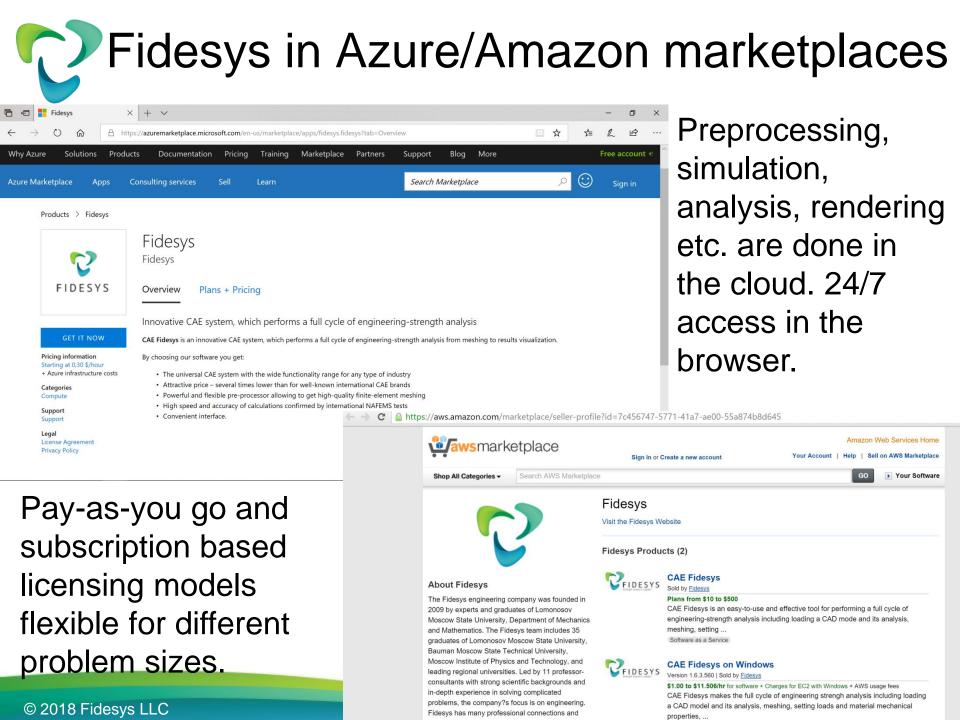

- Making simulation accessible to designers and other non-simulation specialists
- Assess parts and simple assemblies
 - Single material and linear behavior
- Web browser based analysis
 - No software to license or install
- Pre-Paid Usage pricing

Streamlined simulation process

- Upload a STEP or IGES file
 - CAD plug-ins coming
- Mesh created automatically
- Define Material
- Assign Boundary Conditions
- Run Calculation
- Visualize Results in Web browser
- Generate a report

Free	Standard	Premium	Professional	Corporate
\$000	\$1000	\$5000	\$ 250 00	\$ <mark>500</mark> 00
1 User	1 User	1 User	1 User	Multiple Users
0 CPU Hours	1 CPU Hours	10 CPU Hours	60 CPU Hours	150 CPU Hours
0 GB Storage	1 GB Storage	10 GB Storage	100 GB Storage	1000 GB Storage
Free Examples Project	5 Projects (+ Free Examples)	10 Projects (+ Free Examples)	Unlimited Projects (+ Free Examples)	Unlimited Projects (+ Free Examples)
Sign Up Now!	Sign Up Now!	Sign Up Now!	Sign Up Now!	Sign Up Now!

Fidesys Online – cloud CAE


- Available 24/7 in your browser at *http://sim4design.com*
- All calculations, renderings etc are done by the cloud
- Collaboration and joint project analysis

On Documents - Onshape ×			10	No. 1410			ALOUX
← C Ahttps://partn	er.dev.onshape.com/documents?filte	s=recently-oper	edikcolumn=r	nodifiedAt∨	rler=desr	Invite triends Share 👩 -	🗄 🕼 🚇 🗮 Ivan Nikiforov 🕶
Your plan: Free Learn more	4 of 10 Private documents		3 MB of	100 MB Provide	slarage	3 MB of 5.00 GB Taba	a) cozoge
Create 1	Recently opened				Delete	① Knuckle Joint	×
	Name Warksonn	Modified	Modified by	Owned by	Size		
Recently opened	Knuckle Joint	2/13 PM Today	me	ITIE	165		3
My documents.	One more Main	5:02 PM Yest	me	me	2 MB		
Created by me Shared with me	Something Main	10 44 PM Au	me	me	173.		37
Public	Imported Main	10/31 PM Jul	me	me	639		
Tutonals & Samples						Owner	
Trash						me	
Trash						Sharing	
						Not shared	
						Created by	
						me	
						7 30 PM Yesterday	
						Last modified by	
Upgrade to Professional						me 2.13 PM Today	
						2.20 TH Beay	
	© 2013 - Present, Onshape Inc.	All Rights Reserved	Ter	rms & Privacy	(1.37.124	66.f338a1199)	

- Private cloud solution for the client's internal usage
- Available from any device connected to internal Ethernet/VPN
- Cost reduction: cost of ownership, support, security

>30 days

- ➤Fully functional
- Step by step examples (+scripts)
- ≻ Test report
- ≻Windows/Linux 32/64
- Fidesys Viewer (free of charge!)

PRODUCTS	SERVICES	DOWNLOAD	SUPI	PORT	ABOUT	REVIEWS	SIMFORDESIC
Downlo	ad						Andy Gusev [Logout]
Fidesys Pr	ofessional						
Name		Version	Operating	g System		Date	
CAE Fidesys		1.5 R2	Linux, 64-	bit		2014-08-05	
CAE Fidesys		1.6 R2	Windows	7 / 8 / 8.1 / 2008 R2 / 20	12 R2, 64-bit	2015-04-29	
CAE Fidesys		1.6 R2	Windows 2 R2, 32-bit	KP / 7 / 8 / 8.1 / 2003 R	2 / 2008 R2 / 2012	2015-05-19	
CAE Fidesys		1.6 R2	Windows	KP / 2003 R2, 64-bit		2015-05-19	
Journal files		1.6 R2				2015-08-31	
User Guide		1.6 R2				2015-08-31	
Fidesys Vie	ewer	Version		Operating System	۵	ate	
Fidesys Viewer		1.1.5		Windows x32	2	014-08-08	
Fidesys Viewer		1.1.5		Windows x64			
					21	014-08-08	
Please check sys	stem requirements before installin	a.			21	014-08-08	
Please check sys	stem requirements before installin	g.			21	014-08-08	
Please check sys	stem requirements before installin	g.			21	014-08-08	
Please check sys	tem requirements before installin Products	g. Company	Services		2	014-08-08	
Please check sys	Products CAE Fidesys Professional	Company Info	Consulting		2	114-08-08	
Please check sys	Products CAE Fidesys Professional Fidesys Viewer	Company			2	114-08-08	
Please check sys	Products CAE Fidesys Professional Fidesys Viewer SimForDesign	Company Info Jobs	Consulting		2	114-08-08	
	Products CAE Fidesys Professional Fidesys Viewer Sim ForDesign	Company Info Jobs	Consulting		2	114-08-08	

Thank you!

Anatoly Vershinin, CTO Email: <u>a.v.vershinin@cae-fidesys.com</u> Phone: +7 (916) 184-49-28 WWW: <u>www.cae-fidesys.com</u>

